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LETTER TO THE EDITOR 

On the contribution of magnetic scattering to weak 
localization magnetoresistance 

V S Amaral 
Centro de Fisica da Universidade do Porto-INIC, 4000 Porto, Portugal 

Received 27 July 1990 

Abstract. The effect of magneticscattering on weaklocalizationisinvestigated. The different 
contributions of elastic and spin-flip magnetic scattering and their field dependence are used 
to obtain an expression for three-dimensional, weak localization magnetoresistance. 

Weak localization deals with quantum corrections of several electronic properties of 
disordered systems. These are due to interference between pairs of partial waves of 
electrons scattered at defects. Magnetoresistance is one of the best probes for these 
effects; it allows determination of the characteristic electronic scattering rates associated 
with inelastic spin-orbit and magnetic interaction processes [ 11. 

At present the most complete theoretical expressions for magnetoresistance, which 
also take into account the Zeeman splitting of the conduction electron sub-bands, are 
the ones obtained by Maekawa and Fukuyama [2] for ZD films and by Fukuyama and 
Hoshino [3] with a recent extension by Baxter et a1 [4] for 3D systems. However, none 
of these methods completely takes into account the specificities of magnetic scattering, 
either by ignoring the different contributions of elastic and spin-flip magnetic scattering 
processes or by neglecting the effect of the magnetic field on these mechanisms. 

In this letter I present a calculation of the weak localization effect on magneto- 
resistance in the presence of scattering by magnetic impurities, taking these two aspects 
into consideration. The final expressions are extracted for the 3D case. 

According to the general formalism of weak localization [ 1,2] the conducting cor- 
rections in d dimensions are given by 

where D is the diffusion constant, z is the total electron relaxation time and r are the 
relevant particle-particle propagators depending on the spin index (a, p = k) to be 
determined by the Dyson equation 

rap,ys  = ro.B,ys + c ~ ! Y p , y v ~ p U r p B , u s  
P U  

where, with usual approximations [l, 21, we have 

nuu = (2n/h)N(EF)7(1 - (allt - Dq2z) 

f l y - , ,  = (2n/h)N(EF)z(l - 1 0 1  IT - Dq’t -k 2iVfi). 

0953-8984/90/418201 + 04 $03.50 @ 1990 IOP Publishing Ltd 8201 



8202 Letter to the Editor 

w1 is an electron frequency and f = gpBB/2h depends on the effective g-factor for 
electrons and on the magnetic field B. 

r$p,vs isgiven by three contributions, each one associated with a certain characteristic 
scattering time. Potential scattering gives (n /2nN(EF) ) ( l / t 0 )dmp  dy6 and spin-orbit 
scattering (three components in general) gives 

where a' are the Pauli matrices. 
Magnetic scattering can be described by the s-d interaction of conduction electrons 

with a localized spin S [5-71: Hsd = JS * cr. Its contribution to ro will in general consist 
of a sum of terms proportional to 

where ( ) denotes a thermal average. 
When the spins are completely random (isotropy in spin space) all the cross terms 

with i # j vanish and we are left with only the diagonal ones. However, when there is a 
magnetic field this is not the case in principle, and we must consider all the terms. This 
is easier if we expand with raising (S+) and lowering (S - )  operators. Using the properties 
of the thermal averages of spins, we only get terms of the form 

(SiSi)ai EB ai Y6 i , j = x , y , z  

((S'y)a;p $6 (S+ S -)a;@ 0;s (S- S' >a, 0;s. 

Associating a scattering time to each one the magnetic contribution to ro can be 
written in general as: 

These same scattering times correspond to the contributions (with and without spin- 
flip) to the classical magnetic scattering resistivity [6,7] which has the form 

pmag = constant x ( l / t :  + 1/z:- + l / z ; + ) .  

average of S' we have in the first Born approximation [6,7]: 
Expressing the averages of the raising and lowering operators as a function of the 

with 

a = &hPBB/KB T (2) 
where g, is theg-factor of the magnetic impurities of atomic concentration c and $2 is the 
average atomic volume. 

The total relaxation time due to elastic potential scattering, spin-orbit and magnetic 
scattering is given by 

1 1  1 1 2  _ - _  - +27+y+-. 
2 20 i zso 2,  t', 

To simplify, we will assume in the following an isotropic spin-orbit scattering, leading 
to the relation 

l / r io  = 1/32,, i = x , y ,  z 

and we will also make the usual assumption that zo 4 tso,  t:, 2: .  



Letter to the Editor 8203 

Solving the Dyson equations and introducing the inelastic scattering frequency 
( l / z i )  instead of o1 [ l ] ,  we get 

- h 1 - 
Dq2 + ( l / t + )  D q 2  + ( l / ~ - )  

r-+,+- + I-+-,-+ - 

where we defined the frequencies 
1 1  4 2 - - + - + - + + , $  1 1 2 2 2  _ -  +- -=- 
z' Ti 3TS0 +z T* T i  3T,, T: T, 

Y = { f / [ ( 1 / 3 t S 0 )  - ( 1 / ~ 1 ) 1 ) ~ .  
In the following the calculations will be restricted to the 3D case. For each term in r 

associated with a time zj ,  of the type ( h / 2 n N ( E F ) t 2 ) ( D q 2  + 1 / z j ) ,  equation ( 1 )  gives a 
contribution [ 6 , 3 ]  

a j ( B ,  T )  = ( e 2 / 2 n 2 h )  ( e / ~ ' i ) ~ / ~ [ f - f ~ ( B / B ~ )  + q] 
where for each rate l / r j  a characteristic field Bj is associated 

B j  = h/4eDz j  j =  ' , + a n d  - 

andf3(x) is the Kawabata function 
CE 

f3(x) = z ( 2 [ n + l + ( l / x ) ] 1 / 2 - 2 [ 1 2 +  ( l / X ) ] 1 / 2  - [ n + t + ( l / x ) ] - 1 / 2 )  
f l = O  

( 3 )  

for which useful compact formulas can be found in [4]  and [8]. 

ductivity in 3~ as a function of temperature and field 
Finally we can write the expressions for the weak localization correction to con- 

+2*+ ( 1 - y ) - 1 ' 2 ( d ~ - C )  n ( 4 )  

where the fields B',  B+ and B- correspond to the frequencies l/r ' ,  1 / z+  and 1 / ~ -  
according to equation ( 3 ) .  

It is important to notice at this point that these fields do not depend only on tem- 
perature but also on the magnetic field through the spin-scattering terms. Unlike the 
other formulations where this implicit field dependence is not taken into account we will 
have an extra contribution to the magnetoresistance from the terms. 

So we finally obtain 

(APWL/P2) ( B ,  T )  = - [OWL(B7 T )  - O W L @ ,  731 
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with 

y = (3gpBB/8eD(B,, - 3Bf))2. 

The characteristic fields B,,, Bi and Bb are also associated, according to equation 

The field dependence through the average of Sz of the characteristic fields Bi and 
(3 ) ,  with the corresponding spin-orbit and spin-scattering relaxation rates. 

Bf for magnetic scattering can be written as 

B; = B ,  ((SZ)2>/S(S + 1) 

and 

( S Z )  f f I 2  
2S(S + 1) sinh2 ( ~ ~ 1 2 )  Bf = B, 

where B, = (2nN(EF)/4eD) cS2J2S(S + 1) and a is given by equation (2). 
For zero applied field these parameters are identical 

Bi(0)  = Bf(0) = iB,. 
When the applied field B increases up to magnetic saturation the spin-flip con- 

tribution becomes frozen and we have 

Bt(@) = B ,  S/(S + 1) Bi(W) = 0. 

It is also interesting to note that the non-spin-flip magnetic scattering does not 
contribute to dephasing if there are no spin-mixing interactions. In fact, if spin-orbit 
scattering is absent (Bso = 0, very light atoms) and the spin-flip scattering is frozen 
(Bf = 0) either by applying a large magnetic field or in the case of Ising-like magnetic 
impurities (see also [9]), we get B,  = B- in equation ( 5 )  and then ApwL only depends 
on B' = Bi. 

The author is Bolseiro do INIC para Doutoramento and is grateful to J M B Lopes dos 
Santos and A Fert for many suggestions and comments. 
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